Exercices Annales 0 2004 Eléments de Correction:

Exercice 1:

1. On remarque que le plus grand numéro peut être 3 ou 4 ou 5 ou 6 ou 7.

Pour $k \ge 3$, le nombre de tirages de 3 boules dont le plus grand numéro est k est : $\binom{k-1}{2}$ Effectivement, il s'agit alors de tirer deux boules parmi les (k-1) boules dont le numéro est < k.

$$\sum_{k=1}^{7} {k-1 \choose 2}$$

D'où: Nombre de tirages = k = 3

2. D'où tirages de 3 boules distinctes parmi les 7 possède au moins une boule ayant un numéro ≥ 3 .

$$\sum_{k=3}^{7} {k-1 \choose 2} = {7 \choose 3} = 35$$

Exercice 2:

1. Equation de la tangente en M : $y = e^{t}(x-t)-e^{t}$.

Coordonnées de N:N(t-1;0)

Coordonnées de P: P(t; 0)

Distance PN = 1.

$$PN = \frac{f(t)}{f'(t)}$$

- 2. (a) Même principe:
 - (b) PN = constante = k si et seulement si kf'(t) = f(t) (E_k)
 - (c) Solution de (E_k) : $f(t) = Ce^{t/k}$.

Exercice 3:

$$z = \frac{8}{3} - 2i$$

2.
$$y = -x$$

3.
$$n=3k$$

4.
$$z = 2 + \sqrt{2}i$$

$$z_C = \sqrt{3} + 2i$$

6. Cercle de diamètre [AB]. (Ensemble des points tels que l'on ait un angle droit !!!)

Exercice 4:

si et seulement si $\sqrt{x} + \sqrt{y} = 1$

(b) La dernière relation montre que M(x, y) appartient à Γ si et seulement si N(y, x) appartient aussi à G.

D'où la conclusion.

2. (a) Si Γ était un arc de cercle, le centre de ce cercle derait sur la droite d'équation y=x et sur la droite d'équation x=1.

Ce serait donc le point A(1; 1). et son rayon serait R = 1.

(b) Réponse! NON ... car , par exemple, la distance AM avec M sur Γ d'abscisse 1/4 n'est pas 1.

Exercice 7:

- 1. Vrai, car pour tout n, $1+u_n > u_n > 0$
- 2. Si u_n converge alors sa limite L est ≥ 0 car (u_n) positive. Donc $u_n \rightarrow L$ et $u_n + L \rightarrow L + 1$ d'où (v_n) converge vers L/(L+1)
- 3. Vrai! $v_n = f(u_n)$ avec f(x) = x/(x+1) et f croissante sur $[0; +\infty[$ donc les suites ont les mêmes variations.
- 4. Faux!! $u_n = g(v_n)$ avec g(x) = x/(1-x). Si (v_n) converge vers 1 alors (u_n) ne converge pas. On peut aussi prendre la contraposée:

 "Si (v_n) diverge alors (v_n) diverge." Si $v_n = n$ alors (v_n) diverge vers $+\infty$ et (v_n) converge vers

"Si (u_n) diverge alors (v_n) diverge". Si $u_n = n$ alors (u_n) diverge vers +oo et (v_n) converge vers 1.

Exercice 8:

- 1. C'est le plan médiateur de [AB].
- 2. G(1.5;1;-0.5)
- 3. d différent de (AB), de (BC) et (CA).
- 4. J(2;1;1)
- 5. Droites non coplanaires.
- 6. Droite et Plan parallèles.
- 7. Intersection = Droite

Exercice 10: Spécialité

- 1. Faux!! Exemple, 4 ... divisible par 4 mais non par 8.
- 2. Vrai!! car 2 et 3 premiers entre eux et 6 = 2x3.
- 3. Faux!! Exemple, 12 ... divisble par 4 et 6 et non par 24.
- 4. Faux!! (tellement classique...) Prendre a = 7 et b = 5, a + b = 12 et a b = 2.. Pgcd(a + b; a b) = 2
- 5. Vrai !! Si d = Pgcd(2a+b; 3a+2b) alors d divise 2(2a+b) (3a+2b) = a et d divise 3(2a+b)-2(3a+2b) = -b donc d divise a et b donc d = 1.

Exercice 12:

$$g(x) = \int_0^x f(t)dt + \frac{e^{x-1} \times (1-x)}{2}$$

- 2. La dérivée de g est : $g(x) = e^{x-1} (1-x/2)$ d'où g strictement croissante sur [0;1].
- 3. (a) g(0)= Aire du triangle (OIA) avec A(0; f(0)).
 Ce triangle est la moitié du rectangle (ABIO) avec B(1; f(1)) et ce rectangle est inclus dans Δ.
 (b) Théorème des Valeurs intermédiaires...

g continue, strictement croissante sur [0;1] avec $g(0) \le \frac{1}{2} \int_0^1 f(t) dt$ et $g(1) = \int_0^1 f(t) dt$

Donc, il existe α unique compris entre 0 et 1 tel que $g(\alpha) = \frac{1}{2} \int_0^1 f(t) dt$

4. $\alpha = 0.331$ par défaut à 0.001 près.

Exercice 15:

- 1. On calcule la dérivée de f et on obtient que f est strictement croissante sur [0;1]. De plus, f(0) et f(1) sont dans [0;1] d'où la conclusion.
- 2. Faire une récurrence! u_0 est bien dans [0;1].

Hypothèse de récurrence: u_n est dans [0;1].

D'après la quetsion précédente, on en déduit que $f(u_n)$ est dans dans [0;1].

Donc que u_{n+1} est dans [0;1].

D'où la conclusion par récurrence.

3. (a) et (b) On vous laisse le faire ...

$$u_{n+1} - u_n = \frac{3u_n + 2}{u_n + 4} - u_n = \frac{3u_n + 2 - u_n(u_n + 4)}{u_n + 4} = \frac{(1 - u_n)(u_n + 2)}{u_n + 4}$$

On sait que u_n est dans [0;1] donc $u_{n+1} - u_n \ge 0$ donc (u_n) est croissante.

- (d) Suite croissante et majorée par 1, donc Suite convergente
- (e) f est continue et $u_{n+1} = f(u_n)$ donc la limite l de (u_n) vérifie l'équation f(l) = l. On pose l'équation et on a : l = 1 car l dans [0;1]
- 4. (a)

$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 2} = \frac{\frac{3u_n + 2}{u_2 + 4} - 1}{\frac{3u_n + 2}{u_n + 4} + 2} = \frac{(3u_n + 2) - (u_n + 4)}{(3u_n + 2 + 2(u_n + 4))} = \frac{2u_n - 2}{5u_n + 10} = \frac{2}{5} \frac{u_n - 1}{u_n + 2} = \frac{2}{5} v_n$$

D'où la suite (v_n) est bien géométrique de raison (2/5).

(b)
$$v_0 = -1/2$$
 donc $v_n = -(1/2)(2/5)^n$.

$$u_n = \frac{1 + 2v_n}{1 - v_n}$$

On remplace alors v_n par son expression de n et on obtient celle de u_n .

Comme v_n converge vers 0 (car |-2/5| < 1), on retrouve que u_n converge vers 1.

Exercice 16:

- 1. Faites-le!
- Vous calculez les distances AB , AC et BC et vous trouvez à chaque fois 2√3.
 Le triangle ABC est donc bien équilatéral.
 De plus, O est l'isobarycentre des points A? B et C. D'où O = centre de ABC.
- 3. (a) C'est le plan médiateur du segment [AB]. C'est le plan (P) passant par le milieu de [AB] et dont AB est un vecteur normal.

Equation de ce plan : (P) :
$$6x - 2\sqrt{3}y = 0$$

- (b) Même principe. C'est le plan (Q) médiateur du segment [BC]. Equation de ce plan (Q) : y = 0.
- (c) L'intersection de (P) et (Q) est l'ensemble des points vérifiant $\{x = 0 ; y = 0\}$. C'est l'axe (O; k)
- 4. Si ABCD tétraèdre régulier alors D est équidistant des points A, B et C. Donc, d'après la question précédente, D est sur l'axe (O;k).

De plus, on connait la distance AB (voir quetsion 2).

D'où ABCD tétraèdre régulier si et seulement si AD = BD = CD = AB avec D(0; 0; z).

D'où
$$z=2\sqrt{2}$$
 ou $z=-2\sqrt{2}$. D'où l'existence et l'unicité de D . D $(0\,;0\,;2\sqrt{2})$

5. (a) On peut voir que \overrightarrow{AM} . $\overrightarrow{BM} = 12\lambda^2 - 12\lambda + 6$ et $\overrightarrow{AM} = \overrightarrow{BM} = \sqrt{12\lambda^2 - 12\lambda + 12}$

$$\cos(\widehat{AMB}) = \frac{12\lambda^2 - 12\lambda + 6}{12\lambda^2 - 12\lambda + 12} = \frac{2\lambda^2 - 2\lambda + 1}{2(\lambda^2 - \lambda + 1)}$$

(b) Un simple calcul montre que la dérivée de f est du signe de (4x-2). D'où f est décroissante sur]-00;1/2] et croissante sur [1/2;+00].

(c) On sait que cos est décroissante sur $[0; \pi]$. Donc, l'angle AMB est maximum si et seulement si $f(\lambda)$ est minimun.

D'après les variations de f, cela correspond à $\lambda = 1/2$.

Exercice 17: Spécialité

Partie I

1. A et S sont distincts ainsi que C et G, donc il exsite une unique similitude directe telle que S(A)=C et S(E)=G.

L'angle de S est
$$(\overline{AE}; \overline{CG})$$
.

Or, $(\overline{AE}; \overline{CG}) = (\overline{AB}, \overline{CB}) = -\frac{\pi}{2}$, D'où l'angle de S.

- 2. Ω = centre de S.
 - (a) $S(\Omega) = \Omega$ donc $(\Omega A; \Omega C) = -\pi/2$. Donc, comme ABC est rectangle en B, le point Ω appartient au cercle Γ .

De même, $(\Omega S; \Omega G) = -/2$ donc ,comme BSG est rectangle en B, le point appartient aussi au cercle Γ '.

D'où Ω appartient aux deux cercles.

(b) Le point E appartient au segment [AB] donc il existe un réel k compris entre 0 et 1 tel que:

$$\overrightarrow{AE} = \overrightarrow{k} \overrightarrow{AB}$$
 . Si $\overrightarrow{B} = S(B)$ alors : $\overrightarrow{CG} = \overrightarrow{k} \overrightarrow{BC}$

Or, 'appartient au segment [CG], donc cette dernière est impossible ave k compris entre 0 et 1. D'où S(B) distinct de B.

D'où B distinct de Ω .

(c) Comme le centre de S appartient aux deux cercles, on en déduit que le centre de S est le point K.

Partie II

- 1. Faites-le! Remarquons que le point Ω a pour affixe -1 + 2i.
 - Pour le vérifier, il suffit d'écrire les équations des deux cercles Γ et Γ 'chercher leurs points d'intersection.

On peut aussi chercher l'écriture complexe de S, et obtenir z' = [(-1-8i)z + (-30+20i)]/13

2. Ecriture complexe de S' -> Elle est de la forme z' = az + b.

On sait S'(A) = E et S'(C) = G. On écrit alors un système d'équation dont les inconnues sont a et b. Et ona: a = -2i et b = -5. D'où S' : z' = -2iz - 5.

3. Point fixe de S' : On pose l'équation z=-2iz-5 . On a alors z=-1+2i. D'où $\Omega=\Omega$ '.

Exercice 25:

Partie A

 M_1 (0,1 ; 1,1) ; M_2 (0,2 ; 1,190) ; M_3 (0,3 ; 1,2748) ; M_4 (0,4 ; 1,3533) ; M_5 (0,5 ; 1,4272). Placez alors les points!

Partie B

- 1. Pour tout $x \ge 0$, f'(x)f(x) = 1. Done, pour tout $x \ge 0$, on a f(x) non nul.
- 2. Si il existe a tel que f(a) < 0, comme f(0) = 1, et comme f est continue sur [0;a], alors d'après le théorème des valeurs intermédiaires, il existe x0 dans l'intervalle [0;a] tel que f(x0)=0.
- 3. Or, f ne s'annule pas sur [0;+oo[, d'où contradiction. Donc, pour tout $x \ge 0, f(x) > 0$.

Partie C

- 1. On sait que la dérivée de u^2 est 2u'u. Donc une primitive de u'u est $U = (1/2)u^2$.
- 2. La relation "Pour tout $x \ge 0$, f'(x)f(x) = 1" s'écrit : "Pour tout $x \ge 0$, $(f^2(x))' = 2$. Or, Les primitives de la fonction (2) sur l'intervalle [0;+oo[sont de la forme (2x+C) où C est une constante réelle.

Donc, il existe bien une constante réelle C telle que pour tout $x \ge 0$, $f^2(x) = 2x + C$

- 3. On sait de plus que f(0) = 1. On a donc, : $f^2(0) = 1$ d'où, d'après la relation obtenue dans la question 2. , on a C = 1. D'où L'expression de f: $\forall x \in [0; +\infty[$, $f(x) = \sqrt{2x+1}$
- 4. Finissez par les calculs